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1 Introduction 
The discovery and clinical availability of unique drug therapy are increasingly 
governed by a number of severe competitive and regulatory c0nstraints.l To 
develop a potentially useful therapeutic agent to the point of U.S. regulatory 
approval typically demands an investment of some $11.5 million in support of 
an 8-10 year programme. By 1977 the necessary investment is expected to rise 
to $40 million.2 With little understanding at the molecular level of how one 
designs a new agent in any field of clinical need, only 1 in perhaps 15000 com- 
pounds emerges as a commercial product. Any rational synthetic strategy for 
improving these odds must appeal to those concerned with the practical aspects 
of discovery and development of new drug therapy. 

Although still an emerging discipline, quantitative drug design can, in very 
practical terms, contribute both to the discovery of new therapeutic agents and 
to the progress of biomedical research in general. While, to our knowledge, 
there is no example of any molecule having found its way into the physician’s 
armamentarium via quantitative structure-activity analysis, developing tech- 
niques are becoming increasingly more capable of directing synthetic effort 
from compounds that have a low probability of success to structural variations 
often overlooked by the most experienced and imaginative medicinal chemist. 
These powerful tools become even more relevant as modern organic chemistry 
makes vast numbers of compounds synthetically accessible. For example, 
following the discovery of penicillin (1) as an effective and useful antibiotic in 
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F. A. Robinson, Chem. in Britain, 1974,10, 129. 
L. H. Sarett, Research Management, 1974, 18. 
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the treatment of bacterial disease, many laboratories set out to modify the 
structure of the molecule to improve its efficacy while reducing adverse side- 
effects. Penicillin thus became a ‘lead’ structure - the point of departure for 
further synthesis and biological testing. In the typical quest for a better drug 
the lead structure is modified in stepwise fashion, changing both substituent 
groups and parent ring system. It is a sobering thought, however, that in the 
case of penicillin, for 20 substituents (including hydrogen) attached to 3 of the 5 
available positions of the phenyl ring, the number of possible analogues is 36 537. 
Coupling these variations with different amide side-chains, structural changes 
at other positions on the thia-azabicycloheptane nucleus, and variation of the 
heterocyclic ring system per se (including stereochemical possibilities at extant 
asymmetric centres), the medicinal chemist is rapidly confronted with astronomic 
numbers of possible structures; many of these may be arguably reasonable in 
terms of their biological potential, their synthetic (or semi-synthetic) accessibility, 
and, in very commercial terms, their patentability. Indeed, enormous effort has 
already been expended in the synthesis of literally thousands of penicillins and 
the related cephalosporins, very few of which have in fact emerged as successful 
therapeutic agents . The discovery of quantitative s truc t ure-ac t ivi t y relationships 
can reduce such problems to practical dimensions and increase the chances of a 
synthetic programme successfully meeting its objectives. 

The ultimate goal of drug design is to enable the chemist to design compounds 
with a prescribed biological profile. The achievement of this aim still appears to 
be far in the future and will require breakthrough advances - especially in our 
understanding of biological and disease processes at the molecular level. Two 
approaches to the problem have emerged and both have been of significant 
(albeit indirect) value in the discovery and development of new drug therapy. 
The biochemical approach is to design new drugs on the basis of established 
and/or hypothesized models and mechanisms of drug action at the molecular 
level. The other, and the focus of this Review, is primarily a statistical approach 
in which a variety of computational techniques are applied to establish cor- 
relations between the level of a given biological activity and other measurable 
(or calculable) properties associated with the chemical structure of the molecule. 
The separation of the two approaches is, of course, artificial; they must coalesce 
if the ultimate goal of drug design is to be achieved. It is, in fact, an indication 
of the state of the art that the two approaches can be pursued with only very 
small degrees of overlap or cross-impact. 

Virtually all of the published literature in drug design has dealt with the 
analysis of series of chemically closely related compounds, where the primary 
objective is the design of the optimally active compound within a lead series, i.e. 
‘lead optimization’. In practice, drug-design problems cannot be restricted to a 
selected compound series. Although very few attempts have been described 
dealing with the problem of anaIysis of structurally diverse compounds, its im- 
portance and challenge have persuaded us to give strong emphasis in our own 
studies to this particular aspect of the overall problem. This we call ‘lead gen- 
erat ion’. 
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Drug design has been the subject of numerous articles and monographs.3 In 
the review that follows we attempt to describe the state of the art in very practical 
terms to a general chemical readership. In this context, it is worth noting that 
much of the developing methodology lends itself to the correlative analysis of 
chemical structure with any measurable or calculable property of a molecule, 
whether biological, chemical, or physical. Thus, appropriate quantitative drug- 
design techniques can, for example, also be applied to an understanding of 
chemical reactivity, interpretations of spectral behaviour, and to the design of 
other new chemical products, such as paints, plastics, and pesticides. 

2 Genera1 Considerations 

A. Biological.-We define a drug as a chemical substance that exerts a repro- 
ducibly observable effect on a biological system. The effect may be called 
biological activity or biological response, and is usually dose-dependent. The 
dose is the quantity or concentration of the administered compound; the 
response is the observed effect, which can be as objective as the percent inhibition 
of an enzymatic reaction or a change in heart rate, or as subjective as a change 
in the mood or posture of a test animal. In view of the complexity of factors that 
affect the in vivo activity of a drug (absorption, transport, tissue distribution, 
metabolism, etc.), it is not surprising that structureactivity correlation has been 
most successful with data obtained from less complex biological systems such 
as isolated organs, cell cultures, or purified enzymes. 

To reduce the dimensions of dose and response to a single parameter, biolo- 
gical activity is usually expressed as log(l/c), where c is the minimum concen- 
tration required to produce a specific response. Its evaluation requires inter- 
polation of experimental results obtained at several concentrations; in practice 
this is carried out only for the relatively few compounds of special interest. In 
most primary test systems (screens), where compounds are initially tested at a 
single dose only, the activity may be expressed as a percentage (P) of some 
maximal response. For this type of data the logit transformation, ln[P/(100-P)], 
can be useful. 

Experimental variability of biological measurements is much larger than that 
of most physical or chemical measurements. For meaningful correlations, the 
need for reliable biological data with well-defined confidence limits is as evident 
as it is frequently ignored. The drug designer should satisfy himself that the 
experimental design of the test system, in particular the nature and repro- 
ducibility of the observed effects, provides data which are appropriate for 
analysis. 

3 (a) E. J. Ariens, ‘Drug Design’, Academic Press, New York and London, 1971 ; (b) W. P. 
Purcell, G. E. Bass, and J. M. Clayton, ‘Strategy of Drug Design’, John Wiley & Sons, 
New York, 1973 ; (c) A. Burger, ‘Medicinal Chemistry’, Part I, Wiley-Interscience, New 
York, 1970, pp. 25-245. 
J. Thomas, C. E. Berkoff, W. Flagg, J. J. Gallo, R. F. Haff, C. A. Pinto, C. Pellerano, and 
L. Savini (manuscript submitted for publication). 
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B. Computational.-In its most general sense, quantitative drug design embraces 
all attempts to relate biological activities mathematically to other properties of 
molecular structure. Inasmuch as the mathematically simplest relationships 
among several properties are linear equations, the majority of quantitative 
drug-design methods are essentially attempts to derive a linear equation of the 
form (l), where the xi are structural properties and the coefficients at emerge 

m 

biological activity = a0 + 2 a m  
i= 1 

from the analysis. This equation allows prediction of the biological activity of 
any compound for which the xt are known. 

Procedures for obtaining the m coefficients in equation (1) require an experi- 
mentally determined biological activity and a group of rn structural properties 
for each of the n compounds in a series. Because of the relatively low precision 
of biological data and the uncertainty that a linear correlation model is appli- 
cable to any specific structure-activity relationship, good practice in drug design 
requires that n be considerably larger than rn, preferably by a factor of five or 
more. The number of compounds in excess of the minimum (m + 1) required 
for an analysis is called the number of degrees of freedom. 

The set of coefficients at that constitutes the solution for equation (1) is usually 
obtained from the data by the least-squares method using multiple-regression 
computer programs. Statisticians have developed a number of criteria5 to 
evaluate the appropriateness of a regression equation such as (1) for correlating 
the data and for extrapolating to new results. The most important of these are: 
the multiple correlation coefficient (R), where R2 is the proportion of variation 
within the observations that is explained by the equation; and the F-test, an 
assessment of the probability (p) that the relationship derived is actually a chance 
occurrence. It should be recognized that over-reliance on statistical criteria to 
the neglect of common sense is a dangerous and all too frequent abuse.6 

Though undoubtedly an oversimplification, the assumption of a linear 
relation among biological activity and a few structural parameters has proved 
useful among series of related compounds where the biological activity can be 
quantified. To handle more complex drug-design problems, for example the 
analysis of data from the testing of structurally diverse compounds, the various 
methods of pattern recognition may ultimately prove useful. 

The recognition of patterns involving two or three variables is readily achieved 
by the scientist, without computer aid, using spatial representations of the data. 
For example, the existence of any relationship, linear or otherwise, between 
activity and a single function of structure is easily detected by graphical means. 

G. W. Snedecor and W. G. Cochran, ‘Statistical Methods’, Iowa State University Press, 
Ames, 1967; see also ref. 36, p. 27. 
S. H. Unger and C. Hansch, J. Medicin. Chem., 1973, 16, 745. 
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A correlation of activity with two functions of structure can still be recognized 
by plotting the two functions on Cartesian axes with an activity classification 
indicated for each compound/point. For the analysis of multivariate data 
exceeding three dimensions, however, human cognitive processes are poorly 
suited. While there are nearly as many computational methods for pattern 
recognition as workers in the field, those recommended for chemical problems7 
and employed in drug design8-11 include various forms of cluster analysis, 
discriminant analysis, and linear learning machines. Cluster analysis, l2 a 
mathematical technique for classification, seeks similar sets of data; similarity 
is defined in terms of a ‘distance’ between points representing the objects (Le., 
compounds) in multidimensional variable space. Different clustering procedures 
can yield quite different classifications of the same sets of data, depending on the 
precise definition of similarity and the heuristic methods used to simplify the 
computational burdens. Discriminant analysis, a technique firmly grounded 
in classical statistical theory, seeks a linear equation which can be used to place 
an unknown object into either of two classes (Le., active or inactive). In geometric 
terms, it is obvious that discriminant analysis defines a hyperplane which 
optimally bisects a multidimensional data space. Linear learning machines,l4 
heuristic methods originating in the field of artificial intelligence, are useful in 
deriving linear equations. 

The power of any of these methods is enhanced by preprocessing the data in a 
variety of ways which may weigh all features equally, give weight to the features 
expected to have particular importance, or completely remap the features. One 
objective of such remapping is to reduce the data to two or three dimensions 
while retaining as much as possible of the original information. This kind of 
two- or three-dimensional representation can then be displayed by the computer, 
allowing visual pattern recognition by the scientist.7 

3 Lead-optimizing Techniques 
Lead optimization is the phase of the drug development process in which the 
principal goal is to improve the biological profile of a lead compound, typically 
by increasing the separation between a dose that produces desirable activity and 
a dose that produces undesirable side-effects. A lead-optimizing programme, 
which focuses on synthesizing and testing structural modifications of the lead, 

‘I B. R. Kowalski and C. F. Bender, J. Amer. Chem. SOC., 1972, 94, 5632; 1973,95, 686. 
* Y. C. Martin, J. B. Holland, C. H. Jarboe, and N .  Plotnikoff, J. Medicin. Chem., 1974, 

17, 409. 
B. R. Kowalski and C. F. Bender, J .  Amer. Chem. SOC., 1974,96,916. 

lo  K. C. Chu, R. J. Feldmann, M. Shapiro, G. F. Hazard, jun., C. L. Chang, and R. Geran, 
Abstracts of 167th American Chemical Society Meeting, April 1974, CHLT 24; K. C. Chu, 
Analyt. Chem., 1974, in the press. 

l1 K. H. Ting, R. C. Lee, G. W. A. Milne, M. Shapiro, and A. M. Guarino, Science, 1973, 
180, 417. 

l2 R. M. Cormack, J .  Royal Statistical ASSOC., 1971, 134, 321. 
a T. W. Anderson, ‘An Introduction to Multivariate Statistical Analysis’, Wiley, New York, 

1958. 
l4 N .  J. Nilsson, ‘Learning Machines’, McGraw-Hill, New York, 1965. 
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requires the identification of a particular structural moiety which is associable 
with the observed biological activity of a compound. This problem is by no 
means trivial, as is well illustrated by the belated discovery of the cephalosporin 
antibiotics. The principal structural difference between the penicillins and the 
cephalosporins is that the thiazolidine ring of the former has been expanded to 
the corresponding thiazine ring. Nevertheless, some fifteen years of synthetic 
effort failed to uncover the worth of this relatively minor structural modification; 
the exciting antimicrobial utility of the cephalosporins was obliged to await the 
testing of soil microflora samples for its discovery. Although there clearly can 
be no final answer to the question of which part of a structure is responsible 
for the observed biological effects of a molecule, in practical terms the problem 
can be tentatively resolved. Choice of the structural moiety defining the scope 
of a lead-optimizing synthetic programme usually rests on objective and very 
practical considerations such as synthetic accessibility and potential patent- 
ability; unquestionably it also embraces more subjective issues such as a 
scientist’s propensity for one particular type of chemistry over another. 

A. The Physicoche~nical Model.-Introduction of different substituents into a 
lead molecule alters its chemical and consequently its biological properties in 
ways which can often be related linearly to the physicochemical properties of 
the substituents themselves. If such a relation can be found, knowledge of the 
physicochemical properties of unexplored substituents will permit prediction of 
the activities of the unsynthesized members of a lead series. These considerations 
form the basis of the physicochemical model which underlies the development 
of the ‘multiple parameter’ or ‘linear free energy’ approach to drug design. The 
wealth of publications devoted to the physicochemical approach, generally 
associated with the name of Hansch, suggests it to be by far the most popular 
of quantitative drug-design methods. 

The physicochemical properties associated with a substituent may be loosely 
classified as electronic, steric, or solvent partitioning. However, it is not clear 
which laboratory measurements or calculated parameters best define a class of 
substituent properties.15 For example, very different steric effects can be estimated 
from solution kinetics, crystallography, molecular models, quantum mechanics, 
and polarizability data. Understandably perhaps, the number of physicochemical 
substituent properties that have been tried in correlation studies has now reached 
3 2 ; l S  many of these, however, are highly inter~orre1ated.l~ The vast majority of 
published studies have been based on the Hanschrr, often augmented by the 
Harnmett 0, and occasionally by one or more other properties. 

Although the effect of the oillwater distribution ratio on drug action had 
been recognized and even quantified in the nineteenth century,l* it was Hansch 

J. Shorter, Quart. Rev., 1970, 24,433. 
l6 Reference 36, pp. 4 3 4 5 .  
l7 A. Leo, C. Hansch, and C. Church, J .  Medicin Chem., 1969, 12, 766. 
l a  E. Overton, 2. physiol. Chem., 1897, 22, 189. 
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who constructed a theoretical rationale for the effect,l9 developed a standard 
reference system for its measurement,20 and demonstrated its general relevance 
withnumerouscorrelations.21 Thenvalue of a substituent is defined as log(P/Po), 
where P is the partition coefficient between octanol and water for the substituted 
compound and PO the coefficient for the unsubstituted compound. This value 
not only is essentially independent of compound series, but is also well approxi- 
mated for an unknown substituent by summing then values of the substituent 
fragments.22 The additive property ofrr values is extremely useful when synthesis 
of a compound containing a new substituent is being considered. The classical 
Hammett 0, the second most widely used substituent property, is an expression 
of the electronic effect of a substituent. 

Regression equation (2), typical of correlation results involving physico- 
chemical substituent properties, was obtained for a series of nitroso-ureas (2) 
tested for their ability to delay the growth of a solid tumour, the Lewis lung 
carcinoma, in mice.23 

IOg(l/C) = -0.08(10gP)~ + 0.14(10gP) + 1.23 (2) 
[Statistics: n = 13; R2 = 0.585; F2,10 = 7.1 (p <0.025)] 

The log P values in equation (2) are the logarithms of experimentally determined 
octanol-water partition coefficients for the whole molecule; log(1 /c)  and the 
statistical indices are as explained above (cf. Section 2). While the relatively low 
value of R2 indicates that a substantial proportion of the variation in the 
observed biological data has yet to be explained, the results of the R e s t  and 
the large structural variation among the substituent groups R (from adamantyl 
to carboxycyclohexyl) leave little doubt that the structure-activity relationship 
implied by equation (2) is real. 

As is often the case, equation (2) contains a term in (log P)2 and thus describes 
a parabolic rather than a linear relationship between hydrophobicity and 
biological activity. The negative value of the parabolic term in (2) indicates 
further that there is a particular value of the partition coefficient for which 

lo C. Hansch, Accounts Chem. Res., 1969, 2, 232. 
C. Hansch and T. Fujita, J.  Amer. Chern. SOC., 1964, 86, 1616. 
C. Hansch and W. J. Dunn, J. Pharm. Sci., 1972, 61, 1. 

Chimie Therapeutique, 1973,5, 521. 
2 8  A. Leo, C. Hansch, and D. Elkins, Chern. Rev., 1971,71,525; G. G .  Nys and R. F. Rekker, 

a 3  J. A. Montgomery, J. G. Mayo, and C. Hansch, J. Medicin. Chem., 1974,17,477. 
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biological activity will be maximized. Several theoretical attempts to classify 
series of drugs according to their optimal partition coefficient have ap- 
peared.19~21~ 

In principle, p hysicochemicall y based s truc ture-ac t ivity correlation equations 
should be useful in lead development programmes by allowing predictions of the 
activity of unsynthesized compounds. Resulting data would then of course be 
incorporated into refined analyses. In practice, reliable equations often either 
fail to appear or emerge only after interest in further development of a series has 
waned. An important reason can be that the properties of the initial members 
of a series are poorly suited for analysis. Thus recent efforts to present physico- 
chemical data in a form that would be useful at an early stage of lead develop- 
ment should be welcome. For example, Craig has advocated the use of the (T 

versus T scatter diagram shown in Figure 1.25 Selection of representative sub- 
stituents from each of the four quadrants of the graph in Figure 1, in the planning 
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Figure 1 Relationship between the Hammett u and Hansch r values of some commonly 
used para-substituents. 
(Reproduced by permission from J.  Medicin. Chem., 1971, 14,682.) 

R. Franke and W. Schmidt, Acta Biol. Med. Germ., 1973, 31, 273; T. Higuchi and S. S. 
Davis, J .  Pharm. Sci., 1970, 59, 1376. 
P. N. Craig, J .  Medicin. Chem., 1971,14,680. 
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stages of a programme, increases the chances of early discovery of the o/v 
region of maximum activity. Generalizing this approach to five important 
physicochemical parameters, Hansch et aZ.26 used a hierarchical form of cluster 
analysis to classify substituents according to their overall similarity and dis- 
similarity. Most important from a practical viewpoint, T o p l i ~ s ~ ~  has developed 
a set of physicochemically based decision rules whose use during a synthetic 
programme requires no computers or statistics. In six retrospective cases 
cifed,27,28 use of the Topliss decision rules to guide a lead-optimizing synthetic 
programme would have identified the most active compound with considerably 
less chemical effort than that actually expended. 

B. The Additive Model.-One of the simplest models that can form the basis 
for structure-activity correlation among series of related compounds is one that 
assumes that biological activity is an additive property of the substituents that 
vary within the series. Analyses based on this model have been able to account 
for a substantial part of the variation of the biological activity in numerous 
series of compounds. 

Several methods based on the additive model have been described29 but it 
was Free and Wilson who in 1964 developed the technique30 into an elegant and 
now generally accepted form. In their mathematical formulation every sub- 
stituent is assigned a substituent constant which represents the contribution of 
that substituent to the overall biological activity of the molecule in which it is 
present. These substituent constants are evaluated by the least-squares solution 
of a set of linear equations of the form (3), one for each of the molecules in the 
series. 

biological mean biological . sum of substituent /2\  - +  - 
activity - activity 

A recent analysis31 of the antimalarial activity 
carbinols (3) illustrates both the usefulness and 
Free-Wilson methodology. 

\JI contributions 

of a series of phenanthrene- 
the problems of applying the 

HO-CHCH RG & /R' 

(3) 

p E  C. Hansch, S. H. Unger, and A. B. Forsythe, J. Medicin Chem , 1973,16, 1217. 
27 J. G. Topliss, J.  Medicin. Chem., 1972, 15, 1006. 
Y. C. Martin, J.  Medicin. Chem., 1973, 16, 578. 

I s  T. C. Bruice, N. Kharasch, and R. J. Winzler, Arch. Biochem. Biophys., 1956, 62, 305; 
J. Kopecky, K. Bocek, D. Vlachova, and M. Krivucova, Experientia, 1964,20,667. 

30 S .  M. Free, jun., and J. W. Wilson,J. Medicin. Chem., 1964,7,395. 
31 P. N. Craig and C. H. Hansch, J. Medicin. Cheltl., 1973, 16, 661. 
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Possible combination of the substituents represented within the 43 compounds 
available for analysis is 3 x 3 x 3 x 6 x 6 x 3 = 2916. The minimum number 
required to solve the equations is 1 + (2 + 2 + 2 + 5 + 5 + 2) = 19. Thus the number 
of compounds available in excess of this minimum is 43 - 19 = 24 (the number 
of degrees of freedom), which is satisfactory from a statistical point of view. 
However, as seen in Table 1, 6 of the 24 substituents occur only once in the 
series of compounds and the distribution of the other substituents is relatively 
uneven. This, of course, is undesirable but is not atypical of series available for 
retrospective analysis. Such problems could be avoided by application of the 
Free-Wilson methodology in the planning stages of a synthetic lead-optimization 
programme. 

The rank order of the substituent constants at a given position parallels the 
substituent contributions to the biological activity. To estimate the significance of 
the differences between values the student t test is commonly applied.5 The 
tempting conclusion that the optimal compound is one with substituents having 
the highest constant in each position would be valid only if additivity were 
perfect and biological variability of the test system negligibly small, conditions 
seldom if ever satisfied. 

The range of the substituent constants (Table 1) at the different positions on 
the molecule varies substantially (0.093-1.021); this reflects the relative sen- 
sitivity of the biological activity to substitution of the molecule. The larger the 
range the more important is that position for optimizing the biological activity. 
A small range suggests the position to be relatively unimportant, but it may also 
be that appropriate substituents have not been explored. Thus the data presented 
in Table 1 suggest that the substituents explored at position R6 have minimal 
influence on the observed biological activity; in contrast, position R5 appears 
to be most sensitive to substitution. 

Analyses based on regression techniques allow the comparison of calculated 
and experimentally determined biological activities. A useful way of examining 
such data is to construct a plot of calculated versus experimental values; if most 
of the compounds fall into a zone bisecting the axes with a zone-width comparable 
to a specified confidence limit (e.g. 95%) of the experimental values then the 
additive model applied can be deemed appropriate. Compounds represented by 
points clearly outside this zone should be retested biologically and examined 
for possible error in structural assignment. If neither is responsible for the 
deviation, specific interaction between substituents is suggested. The identi- 
fication of such hidden synergisms between groups is an important point of 
departure for further research. 

Further useful information can emerge by recognizing correlations between 
subs t i tuen t constants and the p hy sicochemical parameters (electronic, par tit ion- 
ing, steric) of the substituents. The relative importance of the latter can only be 
established by exploring substituents covering a sufficiently wide range of para- 
meter values; in this regard, reference to substituent scatter diagrams of the 
type shown in Figure 1 can be of considerable value. If the correlation proves 
significant after simple or multiple regression analysis, the synthesis of com- 
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Position 
R1 
R1 
R1 

R2 
R2 
R2 

R3 
R3 
R3 
R3 
R3 
R3 

R4 
R4 
R4 

R5 
R5 
R5 
R5 
R5 
R5 

R6 
R6 
R6 

Group 
c1 
H 
Br 

c1 
CF3 
H 

CF3 
Br 
c1 
I 
F 
H 

CI 
CF3 
H 

CF3 
Br 
c1 
F 
H 
OCH3 

2-piperidyl 
dibutylamino 
diheptylamino 
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Table 1 Free- Wilson analysis of antimalarial phenanthrenecarbinols (3): summary 

No. of 
examples 

3 
39 
1 

7 
1 

35 

7 
1 

10 
1 
2 

22 

1 
1 

41 

18 
2 
6 
2 

13 
2 

13 
13 
17 

Substituent 
constant 

0.130 
- 0.001 
- 0.338 

0.301 
0.292 

- 0.069 

0.384 
0.296 
0.155 
0.129 

- 0.193 
- 0.194 

0.273 
0.043 

- 0.008 

0.451 
0.363 

-0.187 
- 0.196 
- 0.477 
- 0.570 

0.037 
0.0142 

- 0.056 

Range 

0.468 

0.370 1 

1 

0.578 

0.280 

1 
1 1.021 

0.093 

Statistics: n = 43; R2 = 0.853; F = 7.82 (p<O.Ol) 

pounds containing previously untested substituents might be indicated. By 
extending the predictive potential of the analysis beyond new combinations of 
‘old’ substituents, this approach constitutes a very desirable coupling of the 
Hansch and Free-Wilson techniques. 

C. Quantum Chemical Methods.-As early as 1945, the pioneering application 
of quantum chemical reasoning by Pullman led to recognition of the role of 
so-called K and L regions in the carcinogenic activity of fused aromatic hydro- 
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carbons. 32 The valence-bond method used originally gradually yielded to 
molecular orbital (MO) methods; the latter are now used almost exclusively 
when quantum chemistry is applied to problems of structure-activity correlation. 
In early studies the classical Huckel MO methods were employed; these were 
restricted to T electrons and thus to planar molecules or structural fragments. 
In the past decade, MO theory and computational techniques have advanced 
rapidly, andconvenient programme packages are now available for many different 
all-valence-electron MO methods. Particularly extensive use has been made 
of the iterative, semi-empirical approaches based 011 Hoffman’s Extended 
Huckel Theory (EHT)33 and Pople’s Complete Neglect of Differential Overlap 
(CND0).34 

Besides providing numerical values for molecular electronic parameters, the 
all-valence-electron MO methods allow the calculation of conformational 
energy profiles. Preferred (minimum energy) conformations of agonist molecules 
have been assumed to be those required for biological activity. For example, on 
the basis of comparing the minimum energy conformations of acetylcholine, 
muscarine, and muscarone, the muscarinic pharniacophore shown in Figure 2 
was proposed.35J6 Extensive studies of this kind on nicotinic, adrenergic, hista- 
minic, and other agonist and antagonist molecules have been reviewed by Kier.36 

Different calculations on the same molecules can yield different conformational 
energy profiles depending on the molecular parameters (e.g., bond lengths and 
bond angles) and the MO method used. There is no consensus and apparently 
no clear answer as to which of the semi-empirical methods is most reliable. 
Ab initio methods are presumably more accurate, and recent refinements based 
on the molecular fragment approach37 have made these methods suitable for 
molecules as complex as the antibiotic lincomycin (C18H34N206S).38 

More important than the problem of relative accuracy of the various methods 
is whether the preferred conformation of an isolated molecule is likely to be 
involved in its interaction with a receptor. Differences between conformational 
energy minima are often only a few kilocalories and can be more than com- 
pensated by the energy of interaction between agonist and receptor. Thus 
delineation of the nature and magnitude of the conformational barriers might 
be more important than detailed knowledge of the configurations corresponding 
to energy minima. For example, in a recent study of conformational energy 
profiles of histamine and some of its methyl-substituted derivatives, G a n e l l i ~ ~ ~ ~  
presented good evidence to suggest that the conformation of histamine for inter- 

3a A. Pullman, Compt. rend. SOC. Biol., 1945,139, 1956. 
33 R. Hoffmann, J .  Chem. Phys., 1963,39, 1397. 
3 4  J. A. Pople, D. P. Santry, and G. A. Segal, J.  Chem. Phys., 1965,43, S129. 
ss L. B. Kier, Mol. Pharmacol., 1973, 9, 820. 
w L. B. Kier in ‘Advances in Chemistry Series’, No. 114, American Chemical Society, Wnsh- 

ington, 1972, see also J. P. Green, C. L. Johnson, and S. Kang, Ann. Rev. Pharm., 1974, 14, 
319. 

37 R. E. Christofferson, Adv. Quantum Chem., 1972,6,333. 
38 L. L. Shipman, R. E. Christofferson, and B. V. Cheney, J. Medicin. Chem., 1974,17, 583. 

C. R. Ganellin, J. Medicin. Chem., 1973, 16, 620. 
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Figure 2 Predicted con formations of acetylcholine (a), muscarine (b), muscarone (c), and 
proposed muscarinic pharmacophore. 
(Reproduced by permission from Advances in Chemistry Series, No. 114, 1972, p. 120) 

action with one of its two recognized receptors is in the region of a local maximum 
in the energy profile of the molecule. 

Although the computer time required for the MO calculation of a medium 
size (30-60 atom) drug molecule in a single conformation is moderate, a detailed 
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conformational analysis involving several simultaneously variable bond para- 
meters can increase the demand for machine time to the limits of practicability. 
Increasing use of the computationally very much faster PCILO (Perturbation 
Configuration Interaction using Localized Orbitals) MO method40 has now 
greatly reduced this problem, and even the consideration of solvation effects 
has become p0ssible.~1 

Many of the structure-activity correlations using MO calculations are based 
on computed indices reflecting the electronic structure of the rn0lecules.4~ Net 
atomic charges, frontier electron and orbital densities, superdelocalizabilities, 
energies of the highest occupied (HOMO) and lowest empty (LEMO) molecular 
orbitals are some of the most frequently used indices. A comprehensive list of 
MO indices used in structure-activity studies has recently been ~ompiled.~s 
Similar to, and sometimes in conjunction with, experimentally determined 
physicochemical parameters (cJ Section 3A), MO indices can be used in 
multiparameter regression analyses. While there is considerable question 
regarding the reliability of the absolute values of the calculated indices, it is 
generally assumed that errors due to the approximate nature of the MO 
methods, the lack of experimentally determined bond lengths and bond angles, 
the neglect of solvation effects, etc., are largely parallel within structurally 
closely related series. Thus, trends and differences among the indices might be 
meaningful even though the absolute values are not. 

If the molecules in a series under study are conformationally flexible, choice 
of the conformer for evaluation of the indices poses an additional problem. 
Typically, conformational energy investigation is carried out for one or two 
representative members, and preferred conformations are assumed to apply to 
the rest of the series. This is clearly an oversimplification, but separate energy 
minimization for every member of a series is rarely feasible. 

A study44 of the correlation of antihypertensive potencies with EHT MO 
indices in a series of benzothiadiazines clearly illustrates these problems. In this 

U 

* O  S. Diner, J. P. Malrieu, F. Jordan, and M. Gilbert, Theor. Chim. Acta, 1969,15, 100. 
*l  B. Pullman, Ph. Courriere, and H. Berthod, J.  Medicin. Chem., 1974, 17, 439 
4 8  L B. Kier, ‘Molecular Orbital Theory in Drug Research’, Academic Press, New York and 

London, 1971 ; A. Cammarata in ‘Molecular Orbital Studies in Chemical Pharmacology’, 
ed. L. B. Kier, Springer Verlag, New York, 1970. 

4 5  Reference 36, pp. 4 5 4 6 .  
44 A. J. Wohl, Mol. Pharmacol., 1970,6, 195. 
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example, the further complicating possibility of tautomerism was resolved by a 
separate preliminary study45 leading to the conclusion that the equilibrium 
strongly favours the 4H-tautomer (4). It should be borne in mind, however, that 
in the macrobiological milieu activity may reside in an unfavoured tautomer 
even if only a minute fraction of the molecules are in that form at equilibrium. 
Of the various regression equations examined, equation (4) was found to be 
most satisfactory. 

pA2 = 64.12 - 5.16 EHOMO + 55.09 ST + 115.78 St + 5.16q(3R) (4) 
[Statistics: n = 23; R2 = 0.96; F = 62.31 (p < 0.0005)] 

[where pA2 = in vitru potency based on competitive antagonism of Ca2+; 
EHOMO = energy of HOMO in -eV; SF = nucleophilic superdelocalizability 
on atom 5; Sr = nucleophilic superdelocalizability on atom 6; and q(3R) = 
summed regional charge over all atoms in the 3-R group]. 

The statistical significance of the equation is impressive, although 5-substituted 
derivatives were excluded in its derivation and the predicted values for these 
molecules were consistently high. The activity of the 5-substituted derivatives 
could be satisfactorily accounted for by an alternative regression equation 
which, however, required 8 indices, rather too many for a series containing 
only 25 compounds. 

In general, many of the MO indices are calculated for individual atoms, and 
thus the parameter pool available for correlation analysis is large. Selection 
from this pool should ideally be based on biochemical reasoning since reliance 
on stepwise regression methods, which automatically select the statistically 
significant indices, can lead to an often overlooked pitfall. As Topliss has con- 
vincingly demonstrated,46 the likelihood of obtaining chance correlations in- 
creases considerably with the number of parameters tried. The common practice 
of quoting only best regression equations without mentioning the size of the 
parameter pool can be very misleading. 

Reliance on the somewhat arbitrary and artificial atom-by-atom MO 
indices makes less than optimal use of the informational content of the MO 
calculations. However, few constructive alternative approaches have yet been 
suggested. A recent structure-activity study4' of some anticholinergic phen- 
c ycl idine derivatives using CNDO-generated electrostatic pot en t ial maps appears 
to be a promising new departure. 

4 Lead-generating Techniques 
A research programme whose objective is the optimization of a lead represented 
by an existing drug product is unlikely to produce a truly novel therapeutic 

4 5  A. J. Wohl, Mol. Pharmacol., 1970,6,189. 
4 6  J. G. Topliss and R. J. Costello, J. Medicin. Chem., 1972,15, 1066. 
4 7  H. Weinstein, S. Maayani, S. Srebrenik, S. Cohen, and M. Sokolovsky, Mol. Pharmacol., 

1973,9,820. 
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agent. New therapy is more reasonably found either by utilizing established 
testing systems to search for new lead compounds, or by devising new test 
systems where a lead structure may not exist. In either of these cases, a new lead 
might be suggested by consideration of a biochemical model or hypothesis. 
For example, if the objective were to inhibit a particular enzyme, one logical 
strategy would be to give provisional lead status to compounds that resemble 
the natural enzyme substrate, either in the ground or transition state. The dis- 
covery of allopurinol (6),  a xanthine oxidase inhibitor used in the treatment of 
gout, exemplifies this appr0ach.4~ 

OH OH 

allopurinol xanthine 

(6) (7) 

Unfortunately, however, available biochemical hypotheses are often inadequate 
to identify meaningful leads, especially in the areas of most pressing clinical 
need. In the absence of any hypothesis, biochemical or otherwise, lead identi- 
fication must depend primarily upon the screening of structurally diverse com- 
pounds. By virtue of the empirical and all but random character of their com- 
pound requirements, such screening programmes will usually have a relatively 
high throughput capacity. Screens capable of processing a thousand compounds 
per year are common, and the U.S. National Cancer Institute recently increased 
the target,for its primary screen to a thousand compounds per week.49 The 
analysis of data generated at this rate poses challenging problems - and oppor- 
tunities - for the drug designer: 

(i) Based on accumulated experience, how might priorities be established for 

(ii) In which of several possible competing screens should the (probably limited) 

(iii) Can a large body of test data, frequently generated over long periods of 

While the volume of the data and the structural variations represented within 
high-capacity screening programmes suggest the potential for computer assis- 
tance in addressing these problems, useful techniques are, surprisingly, only 
beginning to emerge. 

the selection and testing of new compounds? 

supply of a novel compound be consumed? 

time, be made to yield hitherto unidentified lead structures? 

4 8  G. H. Hitchings, ‘Progress in Drug Research’, P.M.A. Research Symposium, Washington, 

4 g  T. H. Maugh, jun., Science, 1974,184,970. 
D.C., March 6, 1969. 
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Recent independent experiments9 -ll. 50-54 aimed at developing systems 
capable of meeting the challenges of lead generation have been based on sub- 
structural features (functionality, rings, chains, hetero-atoms, and combinations 
thereof).55 The substructural approach has intuitive appeal. In fact, the lead 
concept underlying much of drug design might be paraphrased as ‘a complex 
substructure whose incorporation tends to confer activity on a molecule’. 
Although the term ‘substructural analysis’ has been used for one of the tech- 
niques,51*52 the phrase seems more appropriate as a general name encompassing 
all of these approaches. 

Most substructural analyses can be described formally as attempts to devise 
linear equations in which the likelihood of activity of a compound is related to 
the sum of contributions from its constituent substructures; each substructural 
contribution is in turn computed from past testing experience with compounds 
containing the substructure. Differences among the analyses result from the 
ways that past testing experience is allowed to influence substructural contri- 
butions, and in the coding of the substructures themselves. 

The most common procedure is to form a set of linear equations much like 
those used in the Free-Wilson additive model, except that, for computational 
tractability, the contribution of a substructure must be assumed to be indepen- 
dent of its molecular environment. However, inasmuch as the variety of sub- 
structures coded among a series of unrelated compounds of moderate complexity 
usually greatly exceeds the number of compounds, there initially are far too few 
degrees of freedom for confident regression solution of the equations. Therefore, 
Kowalski and Bender,g Chu et al.,lo and Hiller et aE.,50 have used pattern- 
recognition techniques to extract only the substructures which seem most 
influential in determining activity. Cramer et aZ.51952 use all coded substructures, 
avoiding the problem of degrees of freedom by initially assigning a value to the 
coefficient of each substructural contribution, e.g. the proportion, of actives 
among tested compounds containing the substructure. Other pattern-recognition 
approaches have also been used in substructural analysis, in particular the 
k-nearest-neighbour technique and other methods of cluster analy~is.~ -11953 

For reasons of expedience, the substructures employed in these analyses 
have generally been drawn from existing data-retrieval systems, a less than ideal 
situation since these systems were designed for different purposes. Nevertheless, 
innovative substructural descriptors have been used. For example, instead of 
allowing the substructural parameter simply to be the number of occurrences of 

6 o  S. A. Hiller, V. E. Golender, A. B. Rosenblit, L. A. Rastrigin, and A. B. Glaz, Computers 
and Biomedical Research, 1973, 6,411. 

61 R. D. Cramer tert., G. Redl, and C. E. Berkoff, Abstracts of 167th American Chemical 
Society Meeting, April 1974, CHLT 3. 

6z R. D. Cramer tert., G. Redl, and C. E. Berkoff, J.  Medicin. Chem., 1974, 17, 5 3 3 ;  G. Redl, 
R. D. Cramer tert., and C. E. Berkoff, ‘Proceedings of the Conference on Chemical Struc- 
ture - Biological Activity Relationships’, Prague, June 1973 (in the press). 

63 P. J. Harrison, J. Appl. Statistics, 1968, 17, 226. 
5 4  G. W. Adamson and J. A. Bush, Nature, 1974,248,406. 
5 5  C. E. Granito and E. Garlield, Nuturwiss., 1973,60, 189. 
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a substructure, Kowalski and Bender have defined substructural parameters 
having continuous properties, such as the number of sulphur atoms per carbon 
atom.9 Another experiment was based on the use of mass spectral fragments as 
substructures.11 

Since general statistical criteria for analyses carried out by pattern-recognition 
techniques have not been developed, the validation of a substructural analysis 
requires empirical yardsticks. The degree of success in predicting activity within 
a group of compounds not used in the analysis is compared with some bench- 
mark success rate. Ideally this prediction set will be completely distinct from the 
training set used in the analysis. When the compounds are too few to permit a 
permanent division, ‘leave-~ne-out’~~ or ‘lea~e-n-out’~~ techniques may be 
employed. Using these techniques, a compound or set of n compounds is 
excluded from the training set and the likelihood of its (their) activity is recom- 
puted. The leave-out procedure is repeated until all the compounds have been 
made members of a small prediction set, and the overall results are again 
compared with the benchmark rate. When making these comparisons, considera- 
tion should be given to existing statistical criteria for distributions, such as the 
x2 test.5 We note parenthetically that leave-out tests could also be used to 
evaluate retrospective analyses which employ regression techniques (cf. Section 3). 

Some very recent work51 exemplifies the broad scope and statistically signi- 
ficant, but limited, predictive powers of current approaches. Among 540 struc- 
turally diverse compounds screened for their ability to inhibit passive cutaneous 
anaphylaxis in the rat (a measure of their potential anti-allergic effect), 259 
showed some degree of activity. For each of the 401 substructures among the 
tested compounds, a substructure activity score was computed as [Ar - 
Z(259/540)], where AI is the number of active compounds and Ti the number 
of tested compounds containing the ith substructure. A leave-3-out technique 
was employed. After exclusion of the testing results for a three-compound 
prediction set, the three compounds were ranked by descending values of 
molecular activity score (defined as the sum of the substructure activity scores). 
This procedure was repeated until all 540 compounds had been included in a 
three-compound prediction set, while a record was kept of the number of times 
that the first-place, second-place, and third-place compounds were actually 
active. 

As can be seen in Table 2, there is a relationship between total activity score 

Table 2 The distribution of activity among compounds ranked by descending 
values of the molecular activity score 

Proportion of Average molecular 
Rank active compounds activity score 
1 100/180 = 0.56 40.6 
2 95/180 = 0.53 0.5 
3 64/180 = 0.36 - 31.3 

B. R. Kowalski and C. F. Bender, Analyt. Chem., 1972,44,1405. 
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and the likelihood of activity, since compounds of higher rank were active more 
often. The probability of obtaining a distribution this skewed by chance, were 
there no relationship between molecular activity score and biological activity, 
is less than 2% according to a x 2  test. 

Close examination of the results from OUT substructural analysis of 771 com- 
pounds tested for anti-arthritic activity52 suggests that many compounds fall 
into a category that could be regarded as ‘anti-lead’. These compounds can be 
predicted to have a significantly lower than average chance of being active, 
since a preponderant number of their substructures have occurred mostly in 
inactive compounds. Exclusion of this type of compound from testing con- 
sideration would enhance the lead-generating efficiency of the screen. 

To date, two of the three published substructural analyses involving related 
series of compounds9J1 have been criticized for their apparent triviality; the 
conclusions drawn from the analyses have appeared obvious upon re-examina- 
ation of the data.57958 The third example, an impressive correlation obtained in a 
regression study of the substructures involved in penicillin binding to proteinsY5* 
seems less remarkable to us considering the strong dependence of drug-protein 
binding on hydrophobicity59 and the known additive properties of partition 
coefficients.22 

In view of the severe approximations involved in substructural analysis, the 
ability to obtain any correlation is encouraging. However, the utility of the 
methods in terms of the problems of lead generation raised above remains to be 
conclusively demonstrated. The use of substructural analysis to establish 
screening priorities will, of course, depend upon its reliability, and on the relative 
costs of computer and biological testing.50 The more exciting challenge of 
designing new lead structures (perhaps by combination of substructural fragments 
into more complex moieties) is a more distant but nonetheless realistic goal as 
sophisticated structural representations become available.6O 

5 Conclusions 
‘Is quantitative drug design of any practical use?’ - the provocative question 
often put by the disbeliever. Despite the limited number of successful predictive 
analyses,sf we believe that drug design methodologies should be of great value 
in many of the problems faced by the medicinal chemist. At today’s unfavourable 
odds against any particular compound becoming a drug product, the traditional 
measure of ‘success’ appears to be an unrealistic challenge, rather similar to 

6 7  S. H. Unger, Cancer Chemotherapy Reports, 1974, in the press. 
C. L. Perrin, Science, 1974,183, 551. 

6B W. Scholtan, Arzneim.-Forsch., 1968,18, 505. 
Eo W. T. Wipke, S. R. Heller, R. J. Feldmann, and R. Hyde, ‘Computer Representation and 

Manipulation of Structural Information’, John Wiley and Sons, New York, 1974. 
R. W. Fuller, M. M. Marsh, and J. Mills, J .  Medicin. Chem., 1968, 11, 397; J. G. Beasley 
and W. P. Purcell, Biochim. Biophys. Acta, 1969, 178, 175; Y. C. Martin, T. M. Bustard, 
and K. R. Lynn, J. Medicin. Chem., 1973, 16, 1089; P. J. Goodford, F. E. Norrington, 
W. H. G. Richards, and L. P. Walls, Brit. J. PharmacoI., 1973, 48, 650; H. Cousse, G. 
Mouzin, and L. Dussourd #Hinterland, Chimie Therapeutique, 1973, 4,466. 
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expecting a professional golfer to demonstrate his superior techniques by 
shooting a hole-in-one. 

To the question put by the less disbelieving, ‘Which of the many methodologies 
in current use is the best?’ we respond that there is no direct answer, save that it 
is the wrong question to ask. Different methods require different types of data 
and answer different questions; all approaches must be considered when the 
analysis of a new problem is being planned. 

The application of lead-optimizing regression techniques requires series of 
active compounds and is restricted to relatively narrow structural classes. 
Identification of a lead is therefore a prerequisite. Nevertheless, by identifying 
the physicochemical properties that most influence biological activity in a given 
series, multiparameter analysis may help elucidate the biological mechanisms of 
action and thus contribute to the discovery of new leads as well as to the opti- 
mization of existing ones. This underscores the somewhat arbitrary nature of the 
distinction between lead-op t imizing and lead-genera t ing techniques. 

Until recently, quantitative drug design has not been applied to the problems 
of generating new structural leads. Substructural analysis now offers great 
promise, in particular because of its capacity to accommodate qualitative data 
on large numbers of diverse structures. 

Drug design is undeniably still in its infancy, and quanta1 improvements are 
needed in virtually all aspects of available methodologies. To realize its full 
potential, readjustment of existing attitudes towards application of the tech- 
niques is mandatory at critical points in a research programme. For example, 
its impact should be anticipated in the planning stages of any chemical prog- 
ramme devoted to the synthesis of an optimally active compound. Further, in 
the absence of rationally founded chemistry it is tempting, even wise, to be 
guided by the most tenuous of predictions based on structure-activity cor- 
relations. However, the original tenuousness of the predictions must be remem- 
bered, especially if negative data appear. Only with better integration into the 
overall research process can quantitative drug design assume its proper place 
and emerge as a mature technology. 

We thank Dr. A. D. Bender for stimulating discussion and continuing en- 
couragement. 
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